

Grupo Neuropsicología y Conducta GRUNECO - Grupo de Neurociencias de Antioquia GNA

PI.12

Differential cerebrovascular network alterations in Alzheimer's **Disease:** APOE3CH vascular protection

Pablo Valderrama-Carmona^{1,2*} J. Alejandro Ossa^{1,2}, Julian Henao-Restrepo^{1,2}, Carolina López-Murillo^{1,2}, Andrés Villegas³ Francisco Lopera¹ Rafael Posada-Duque^{1,2*}

¹Grupo de Neurociencias de Antioquia GNA, Universidad de Antioquia, Medellín, Colombia; ²Área de Neurofisiología Celular, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, Colombia; ³Biobanco, Grupo de Neurociencias de Antioquia GNA, Universidad de Antioquia, Medellín, Colombia *rafael.posada@udea.edu.co; pablo.valderramac@udea.edu.co; +57 3175872558

INTRODUCTION

3. Main molecular actors

2. FAD exhibits small vessel vascular inflammation, while APOE3ch is protected from neuroinflammation and mural cell loss

METHODS

Figure 2. Representative images of mural cells (A) and microglia (B) immunostained with αSMA and Iba1 by IHC. Insets at bottom right show a higher magnification image. (C) Quantifications of α SMA and Iba1 area. (D, D') Representative confocal images of the GVU immunostained with Iba1, αSMA and UEA-I segmented 0-3 μ m away from the vessel (D). Magnifications show regions of microglial-mural cell contact (D'). Quantifications of the endothelial coverage and correlation analysis with vessel diameter are shown in (E). Pearson's coefficient (r) and P-value (p) for FAD are shown in blue.

3. AQP4 is mislocalized and its vascular coverage is decreased in FAD and APOE3ch, but not in SAD

Quantification of % area stained IHC

analysis: distance map

CNT SAD FAD

CNT SAD FAD

CNT SAD FAD

CNT SAD FAD

RESULTS

1. FAD shows alterations in the topology of cerebrovascular networks, while APOE3ch is protected

Figure 3. Representative images of AQP4 by IHC (A). Insets show a 5X magnification. Representative confocal images immunostained with AQP4, GFAP and UEA-I (B). Insets show vascular coverage by astrocytic endfeet (B'). Quantification of AQP4 area by IHC and endothelial coverage by IF are shown in (C).

The integrity of cerebrovascular networks, neuroinflammation and small-vessel vascular inflammation play a role in the development and protection from FAD, which suggests them as alternative therapeutic targets with potential for protection or onset-delay of the disease, as nature taught us with the APOE3ch resistant case

REFERENCES

1.Henao-Restrepo, Julián, et al. "Gliovascular alterations in sporadic and familial Alzheimer's disease: APOE3 Christchurch homozygote glioprotection." Brain Pathology (2022): e13119.

2.López-Ornelas, A. et al. "The impairment of blood-brain barrier in Alzheimer's disease: challenges and

opportunities with stem cells." International Journal of Molecular Sciences 23.17 (2022): 10136.

3.Zalocusky, Kelly A., Maxine R. Nelson, and Yadong Huang. "An Alzheimer's-disease-protective APOE mutation."

